Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |

Un poste de lecturer IA est annoncé sur le site de SCAI


Chiffres clefs

189 personnes travaillent au LJLL

86 permanents

80 chercheurs et enseignants-chercheurs permanents

6 ingénieurs, techniciens et personnels administratifs

103 personnels non permanents

74 doctorants

15 post-doc et ATER

14 émérites et collaborateurs bénévoles


Chiffres janvier 2022


Séminaire du LJLL - 18 06 2021 14h00 : T.Y. Hou

18 juin 2021 — 14h00
Exposé à distance retransmis par Zoom
Thomas Y. Hou (Institut de Technologie de Californie, Pasadena)
Potential singularity of 3D incompressible Euler equations and nearly singular solutions of 3D Navier-Stokes equations
Whether the 3D incompressible Euler and Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In an effort to provide a rigorous proof of the potential Euler singularity revealed by the Luo-Hou computation, we develop a novel method of analysis and prove that the original De Gregorio model and the Hou-Lou model develop a finite time singularity from smooth initial data. Using this framework and some techniques from Elgindi’s recent work on Euler singularity, we prove the finite time blowup of the 2D Boussinesq and 3D Euler equations with C^(1, alpha) initial velocity and boundary. Further, we present some new numerical evidence that the 3D incompressible Euler equations with smooth initial data develop a potential finite time singularity at the origin, which is quite different from the Luo-Hou scenario. Our study also shows that the 3D Navier-Stokes equations develop nearly singular solutions with maximum vorticity increasing by a factor of 10^7. However, the viscous effect eventually dominates vortex stretching and the 3D Navier-Stokes equations narrowly escape finite time blowup. Finally, we present strong numerical evidence that the 3D Navier-Stokes equations with slowly decaying viscosity develop a finite time singularity.